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Abstract

This paper describes an integrated system for co-
ordinating multiple rover behavior with the overall
goal of collecting planetary surface data. The Multi-
Rover Integrated Science Understanding System com-
bines concepts from machine learning with planning
and scheduling to perform autonomous scientific ex-
ploration by cooperating rovers. The integrated system
utilizes a novel machine-learning clustering component
to analyze science data and direct new science activ-
ities. A distributed planning and scheduling system
is employed to generate rover plans for achieving sci-
ence goals, to coordinate activities among rovers, and
to replan when necessary. We describe each of these
components and describe how they are integrated with
a planetary environment simulation.

Introduction

NASA has recently outlined a new Mars program which
will have us visit the red planet over six times in the
next two decades. At least four of these missions will
involve rovers or other robotic craft that will be used to
explore the surface of the planet and perform numer-
ous geological, atmospheric, and other scientific exper-
iments. In order to increase science return and enable
certain types of science activities, future missions such
as these will utilize large sets of rovers to gather the
desired data. These rovers will need to behave in a
coordinated fashion where each rover accomplishes a
subset of the overall mission goals and shares any ac-
quired information. In addition, it is desirable to have
highly autonomous rovers that require little communi-
cation with scientists and engineers on Earth to per-
form their tasks. An autonomous rover will be able
to make decisions on its own as to what exact science
data should be returned and how to go about the data
gathering process.

This paper discusses the Multi-Rover Integrated Sci-
ence Understanding System (MISUS) (Estlin et al.
1999) which provides a framework for autonomously
generating and achieving planetary science goals. This
system integrates techniques from machine learning
with planning and scheduling to enable autonomous
multi-rover behavior for analyzing science data, eval-

uating what new science observations to perform, and
deciding what steps should be taken to perform them.
These techniques are also integrated with a simulation
environment that can model different planetary terrains
and science data within a terrain.

Science data analysis in MISUS is performed using
machine-learning clustering methods, which use image
and spectral mineralogical features to help classify dif-
ferent planetary rock types. These methods look for
similarity classes of visible, rock image regions within
individual spectral images and across multiple images.
Output clusters are used to help evaluate scientific hy-
potheses and also to prioritize visible surfaces for fur-
ther observation based on their “scientific interest.” As
the system builds a model of the rock type distribution,
it continuously assembles a new set of observation goals
for a team of rovers to collect from different terrain loca-
tions. Thus, the clusterer drives the science process by
analyzing the current data set and then deciding what
new and interesting observations should be made.

A distributed planning and scheduling component
is used to determine the rover activities required to
achieve requested science goals. Based on an input set
of goals and each rover’s initial conditions, the planner
generates a sequence of activities that satisfy the goals
while obeying each of the rover’s resource constraints
and operation rules. Furthermore, as information is
acquired regarding command-execution status and ac-
tual resource utilization, the planner updates future-
plan projections. Planning is distributed among the in-
dividual rovers where each rover is responsible for plan-
ning for its own activities. A central planning system
is responsible for dividing up the goals among the in-
dividual rovers in a fashion that minimizes the total
traversing time of all rovers.

The components described above are also integrated
with a simulation environment that models multiple-
rover science operations in a Mars-like terrain. Different
Martian rockscapes are created for use in the simulator
by using distributions over rock types, sizes and loca-
tions. When science measurements are requested from
a terrain during execution, rock and mineral spectral
models are used to generate sample spectra based on
the type of rock being observed.



Cooperating Rovers for Science

Utilizing multiple rovers on planetary science missions
has many advantages. First, multiple rovers can collect
more data than a single rover. Second, multiple rovers
can perform tasks that otherwise would not be possi-
ble. For instance, more complicated cooperative tasks
can be accomplished, such as taking a wide baseline
stereo image (which requires two cameras separated by
a certain distance). Finally, multiple rovers can enhance
mission success through increased system redundancy.
If one rover fails, then its tasks could be quickly taken
over by another rover.

Coordinating multiple distributed agents for a mis-
sion to Mars or another planet introduces some interest-
ing new challenges for the supporting technology. Issues
arise concerning communication, control and individual
on-board capabilities. Many of these design decisions
are related, and all of them have an impact on any on-
board technologies used for the mission. For example,
for an on-board science analysis system, the amount of
communication bandwidth available will determine how
much science data can be easily shared. This factor will
also affect a planning system by determining how much
each rover can coordinate with other rovers to perform
tasks. The control scheme will determine which rovers
execute what science gathering tasks, which affects the
on-board components. For instance, some rovers may
be utilized only for science data gathering, while others
may be used for planning and/or science analysis. De-
cisions regarding the on-board capabilities of each rover
can also determine the independence of a rover.

For the framework presented in this paper, we have
initially chosen the configuration of a team of three
rovers. Science goals are divided among the three
rovers. Each rover is identical and is assumed to have
a spectrometer on-board as well as other resources in-
cluding a drive motor, a solar panel that provides power
for rover activities, and a battery that provides backup
power when solar power is not available. The battery
can also be recharged using the solar panel when possi-
ble. Collected science data is immediately transmitted
to the lander where it is stored in memory. The lander
can only receive transmissions from one rover at a time.

Multi-Rover Science Architecture

The overall MISUS architecture is shown in Figure 1.
The system is comprised of three major components:

e Data Analysis: A distributed machine-learning sys-
tem which performs unsupervised clustering to model
the distribution of rock types observed by the rovers.
This system is designed to direct rover sensing to con-
tinually improve this model of the scientific content
of the planetary scene.

e Planning: A distributed-planning system that pro-
duces rover-operation plans to achieve input rover
science goals. Planning is divided between a central
planner, which efficiently divides up science goals be-

tween rovers, and a distributed set of planners which
each plan for operations upon an individual rover.

e Environment simulator: A multiple rover simula-
tor that models different geological environments and
rover-science operations within them. The simulator
manages science data for each environment, tracks
rover operations within the terrain, and reflects read-
ings by rover science instruments.

MISUS operates in a closed-loop fashion where the
data analysis system can be seen to take the role of
the scientist driving the exploration process. Spectra
data are received by individual rover clustering algo-
rithms, which attempt to locally model the distribution
of rocks according to broad classifications of rock com-
positions. This information is then sent to a central
clusterer which integrates all gathered data into an up-
dated global model and broadcasts the new model back
to the distributed clusterers. A prioritization algorithm
uses the clustering output to generate a new set of ob-
servation goals that will further improve the accuracy
of the model. These goals are passed to a central plan-
ner which assigns individual rovers to goals in a fashion
that will most efficiently serve the requests. Then each
rover planner produces a set of actions for that rover
which will achieve as many of its assigned goals as pos-
sible. These action sequences are sent to the simulator
where they are executed and any gathered data is sent
back to the rover clusterers. This cycle continues until
enough data is gathered to produce distinct clusters for
any observed rock types.

In the next few sections, we discuss each of the
MISUS system components in more detail.

Data Analysis System

To perform science analysis, we use a machine-learning
system which performs unsupervised clustering to
model the distribution of rock types in the observed
terrain. A primary feature of MISUS is that the sepa-
rate rovers cooperate to form a joint consensus for the
observed distribution of rock types. Through a learning
process, the global distribution model keeps improving
as more data is observed over time. For this demonstra-
tion prototype, the model used for this distribution is
a simple K-means-like unsupervised clustering model,
where each cluster represents a different rock type in
the sensor space. In the present simulation, each sen-
sor reading is a spectral measurement returning values
at 14 wavelengths; learning takes place in the full 14-
dimensional continuous space.

At any given time, each rover has a different location
on the planetary surface and is sensing different tar-
gets. So each rover has its own distinct segment of the
overall dataset, stored locally in its data buffer. Over
time, each rover collects a new set of data points, or
14-dimensional spectrum readings, adding it to its ex-
isting store of data points. Clustering is initiated after
each rover has obtained new observations. A sample
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Figure 1: MISUS Architecture Diagram

cluster model (shown for 2 of 14 dimensions) is shown
in Figure 2.
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Figure 2: Example spectra feature space

Clustering is based on the EM (Expectation-Max-
imization) algorithm, an iterative optimization proce-
dure, which normally requires several passes over the
entire data. Rovers must share information through a
power-expensive communication channel. Thus, rather
than send its local dataset to one or more other rovers,
the distributed clustering algorithm allows a rover to
send only a small set of parameters which summarizes
its local data. Each rover’s model parameters are com-
puted locally, then sent to a central clusterer which
integrates them into an updated global model (which
is also a small set of parameters) and broadcasts that
model to all rovers in the system. Each rover takes
this global model into account when making its local

estimate. This process continues iteratively until con-
vergence. This scheme trades off some accuracy in the
global model in order to minimize communication. In
the limit of large datasets, this scheme approximates
the equivalent non-distributed clustering model (where
one processor may examine all the data at once) more
and more closely. In particular, the distributed version
of the clustering model follows a development similar
to that in (Tsioutsias & Mjolsness 1994) for partitioned
neural networks.

The clustering model in this initial prototype sys-
tem may be viewed as the scientific end-product of the
exploration. The overall purpose of the system is to in-
crease the accuracy of the clustering model by obtaining
sensor readings in regions that are likely to improve the
model. An update of the clustering model determines
new planetary locations to be explored by the rovers.
These locations are sent as formal goals by the learner
to the planner.

A very simple heuristic for goal selection is used in
the current system. A constant number G of new spa-
tial targets will be specified for each cluster. For each
cluster, two of the G spatial targets are chosen by first
finding the two mutually most distant points (in phys-
ical space) of that rock type, then selecting a point in
space stochastically from within a neighborhood of each
of those 2 points. These goals are given high priority.
The rest of the G targets are chosen from neighbor-
hoods of randomly selected rocks in the cluster, and
are given lower priority. The idea of this heuristic is
to bias the system toward exploration in extremal di-
rections, as well as to explore the rock distribution in
a way which balances effort equally between rock types
(thus avoiding, say, spending undue energy on a very
common rock type at the expense of rare rock types).
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Figure 3: Example CASPER plan

Planning System

To produce individual rover plans, we used a dis-
tributed version of the CASPER (Continuous Activ-
ity Scheduling, Planning, Execution and Replanning)
system (Chien et al. 2000). CASPER is a dynamic-
planning application framework that can be tailored to
specific domains. For this application, CASPER inputs
a set of science goals and produces the necessary rover-
activity sequence. This sequence is generated by utiliz-
ing an iterative repair algorithm (Zweben et al. 1994),
which classifies conflicts and attacks them each individ-
ually. Conflicts occur when a plan constraint has been
violated where this constraint could be temporal or in-
volve a resource, state or activity parameter. Conflicts
are resolved by performing one or more schedule modi-
fications such as moving, adding, or deleting activities.

A rover that is at the incorrect location for a sched-
uled science activity is one type of conflict. Resolving
this particular conflict involves adding a traverse com-
mand to send the rover to the designated site. Other
conflicts may include having more than one rover com-
municating with the lander at a time or having too
many activities scheduled for one rover, which oversub-
scribed its power resources. The iterative repair algo-
rithm continues until no conflicts remain in the sched-
ule, or a timeout has expired. Figure 3 shows an exam-
ple rover-plan displayed in the CASPER GUL

To support missions with multiple rovers, we devel-
oped a distributed version of CASPER where it is as-
sumed each rover has an on-board planner. There is
also a central planner, which could be located on a lan-
der or on one of the rovers. This distributed approach
allows rovers to plan for themselves and/or for other
rovers. The central planner develops an abstract plan
for all rovers, while each rover planner develops a de-
tailed, executable plan for its own activities. The cen-
tral planner also acts as a router, taking a global set of
goals and dividing it up among the rovers. For exam-
ple, a science goal may request an image of a particular
rock without concern for which rover acquires the im-
age. The central planner could assign this goal to the

rover that is closest to the rock in order to minimize
the traversals of all rovers.

To achieve a high-level of responsiveness for each on-
board rover planner, we utilize a continuous planning
approach. Each rover planner has a current goal set,
a current state, a current plan and state projections in
the future for that plan. At any time, an incremental
update to the goals or current state may change the
current plan. This update may be an unexpected event
or simply time progressing forward. Each rover plan-
ner is then responsible for maintaining a plan consistent
with the most current information. The current plan is
the planner’s estimation as to what it expects to hap-
pen in the world if things go as expected. However,
since things rarely go exactly as expected, each planner
stands ready to continually modify the plan. Iterative
repair techniques, as mentioned previously, enable in-
cremental changes to the goals, initial state or plan, and
then iteratively resolve any conflicts that may arise.

One of the dominating characteristics of the multi-
rover application is rover traversals to designated way-
points. Decisions must be made not only to satisfy the
requested goals, but also to provide more optimal sched-
ules. CASPER can consider optimization goals during
the repair process. As certain types of conflicts are re-
solved, heuristics are used to guide the search towards
making decisions that will produce higher quality sched-
ules. For this application, we have implemented heuris-
tics based on techniques from the Multi-Traveling Sales-
men Problem (MTSP), which is similar to the Traveling
Salesman Problem (TSP). For MTSP, at least one mem-
ber of a sales team must visit each city such that total
traveling time is minimized. Both the central and rover
planners utilize the MTSP heuristics. In previously re-
ported results, they were shown to make a significant
impact in reducing traversal distance and expected ex-
ecution time (Rabideau, Estlin, & Chien 1999).

Environment Simulator

The environment simulator is designed to provide a
source of data for the science analysis system by sim-
ulating the science gathering activities of the rover.
Given the current science scenario, this entails the gen-
eration of an environment and the simulation of rover
data gathering activities within the environment.

Generation of the environment requires producing a
field of rocks for the rovers to traverse. The rock field
is generated as a plane with rocks of various sizes em-
bedded at various depths. The simulator maintains in-
formation about the mineral composition of each rock,
and the spectrum that would correspond to its mineral
composition. The size and spatial distributions of the
rockfield were developed by examining distributions of
rocks observed by the Viking Landers, Mars Lander and
Mars Pathfinder. The distribution of minerals that can
occur in rocks was developed in collaboration with plan-
etary geologists at JPL, and the spectra associated with
rocks are generated from the spectra of the component
minerals via a linear-mixing model.



Figure 4: Overhead view of simulated rockscape. Wedges
denote different rovers’ spectrometers’ fields of view.

The simulation of the rover activities was done at
a coarse level. Such considerations as kinematics and
obstacle avoidance were not modeled. Other considera-
tions, such as power consumption and memory manage-
ment were only modeled by the planner for plan gen-
eration. The rovers were essentially modeled as roving
spectrometers by the simulator. Figure 4 shows sev-
eral rovers and their spectrometer reaches modeled in
a sample rockscape. The simulation of rover activi-
ties was accomplished by executing the plan generated
by the planner, consisting of a list of movement, rota-
tion, and instrument commands. The simulator would
then, from the location and direction specified by the
movement and rotation commands, determine whether
or not a rock was visible by the boresighted spectrom-
eter. If so, the simulator would perturb the spectra
in an amount proportional to the distance of the rover
from the rock in order to simulate instrument noise,
and store the spectrum for later communication to the
relevant clusterer. After all of the activities in a plan
were executed by the simulator (i.e. moves, turns, and
data gathering activities), the data was communicated
to each clusterer via synchronization agents. The sim-
ulator would then wait for the next plan.

Related Work

The idea of having a scientific discovery system direct
future experiments is present in a number of other sys-
tems (Nordhausen & Langley 1993; Rajamoney 1990),
however none of these systems examine the problem of
planetary science, interact with an environment simu-
lator or are integrated with a planning system that can
create a command sequence to perform the necessary
experiments.

There has also been a significant amount of work on
cooperating robots, in the form of distributing plan-
ning approaches (Brummit & Stentz 1988) and behav-
ioral approaches (Matarlc\1995 Parker 1999). However
most of these systems; to tos not reason about high-level
mission goals and none "o these systems utilize a learn-
ing component to drive science experiments.

Conclusions

This paper outlines a framework for coordinating mul-
tiple rover behavior in generating and achieving geo-
logical science goals. This system integrates techniques
from machine learning and planning and scheduling to
autonomously analyze and request new science data and
generate the action sequences to retrieve that data. We
discuss a number of integration issues including devel-
oping shared goal and plan representations, coordinat-
ing systems asynchronously, and adjusting interface pa-
rameters to best serve the overall system goal. We hope
the techniques and issues presented in this paper will
prove useful to other designers of integrated systems.
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